ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

What Are Stem Cells?

Updated on November 18, 2013

Stem Cell Differentiation

In this example, multipotent adult stem cells from bone marrow give rise to many different blood cells.
In this example, multipotent adult stem cells from bone marrow give rise to many different blood cells. | Source

Types of Cells

The human body (and every other multi-cellular organism) has millions of cells, which perform different functions within the body. The cells in the liver are different from the cells in the brain, and both of these cell types are different from the cells that form bone. These cells are differentiated, which means they are specific to the function they need to perform.

Early in development, however, cells are not differentiated: the cells in a very early embryo (called a blastocyst) can become any cell type. These cells are pluripotent, with the potential to become a bone cell, cardiac cell, or any other cell within the body. Stem cells are pluripotent cells, and occur in embryos and in some adult tissues (namely, skin and blood).


Embryonic Stem Cells

Embryonic stem cells, as seen under a microscope.
Embryonic stem cells, as seen under a microscope. | Source

Where Are Stem Cells Found?

Embryonic Stem Cells are found in early embryos, before cellular differentiation has begun. Early embryos are usually obtained from in-vitro fertilization, with the donor’s consent. The cells are grown in a nutrient rich broth called a culture medium. Cells that grow successfully and do not have any genetic defects, mutations, or signs of differentiation become an embryonic stem cell line.

Cord Blood Stem Cells are stem cells circulating through a baby’s blood system at the time of birth. Blood is taken from the infant’s umbilical cord to harvest these cells. While not as pluripotent as embryonic stem cells, the cells found in an umbilical cord are more flexible than adult stem cells. These “cord blood derived embryonic-like stem cells” (CBEs) can be induced to form many different tissue types, and are easier to grow than adult stem cells.

Adult Stem Cells are found in many different tissues. Stem cells have been found in skin, bone marrow, muscle, the intestinal tract, and in many other organs. These stem cells reside in what is called a stem cell niche, and are very difficult to grow outside the human body. Once identified, the cells are grown in cell culture media, and scientists try to induce them to differentiate into the tissue they were derived from. If successful, these induced stem cells can be used to treat diseases like Type I Diabetes (pancreatic cells) or injuries. For example, burns may be treated with the use of skin stem cells, which grow new skin over the patient’s wounds.

Some scientists are working on inducing adult stem cells to turn into a tissue that differs from the “parent” tissue – this is called transdifferentiation. Genetic modification is used to program these cells to differentiate into a new tissue type – in this case, a neural stem cell might be induced to become a hematopoietic stem cell. Another method for transdifferentiation is programming the adult stem cells to return to an embryonic stem cell state – a process known as Induced Pluripotent Stem Cells (iPSCs).

Types of Adult Stem Cells

Cell Type
Gives Rise to These Tissues
Potential Therapies
Hematopoietic
red blood cells, macrophages, lymphocytes, eosinophils, basophils, monocytes
Transplants for leukemia and multiple myeloma
Mesenchymal
fat cells, bone cells, cartilage cells
Reconstruction of damaged bone and vascular tissue
Neural
astrocytes, oligodendrocytes, and neurons
Treatment of ALS, strokes, and spinal cord injuries
Epithelial
cells lining the intestinal tract: goblet cells, absorptive cells, endocrine cells, and paneth cells
Treatment of ectodermal dysplasias, burn wounds, and ulcers
Skin
hair and skin
Wound treatment from burns, baldness
Source

Stem Cell Controversy

There is little controversy over the use of cord blood stem cells or adult stem cells, but the use of embryonic stem cells has generated a significant ethical debate. The acquisition of embryonic stem cells from donated embryos requires the destruction of that embryo. For some, this is the same situation as infanticide. For others, the early stage embryos have no moral status at all. The basic beliefs about the use of embryonic cells are:

No Moral Status

There are those who believe the embryonic cells have absolutely no moral status, as they have no thoughts, expectations, or beliefs.

Full Moral Status at Fertilization

For some, the early embryos are viewed as "persons," with the same rights and protections as any other member of society. Since the development from zygote (fertilized egg) to infant is a continuous process, a single point of time for becoming a "person" cannot be established. The embryo will become a person and should be protected as such from the moment of conception.

Moral Status at 14 Days

Prior to 14 days post-fertilization, an embryo may still split into twins (or more), has no central nervous system, and cells are undifferentiated. Some believe this is the cut-off point for the use of embryonic stem cells: once the primitive streak appears to form the central nervous system, full moral status should be granted to the embryo.

Embryonic Stem Cell Poll

When should an embryo be considered a person?

See results

Gradual Onset of Moral Status

As a developing embryo goes through many "milestones" of development, there are a number of stages where increasing moral status could be granted. Some milestones include:

  • Six days after fertilization, the embryo implants into the uterine wall. This is approximately the timea pregnancy test would turn positive.
  • 14 days after fertilization, the embryo develops the beginning stages of the central nervous system.
  • Four weeks after fertilization, when the embryo develops a heart beat.
  • 8 weeks after fertilization, when the fetus has detectable brain waves.
  • 21-22 weeks after fertilization, the limit of viability outside the womb (with intensive care).
  • 38 weeks after fertilization, or birth.

Pluripotent Stem Cells

Pluripotent stem cells naturally occur in early embryos.
Pluripotent stem cells naturally occur in early embryos. | Source

Induced Pluripotent Stem Cells

Due to the controversy surrounding the use of embryonic cells, there has been an emphasis on creating "embryonic-like" cells from adult stem cells. These cells are called induced pluripotent stem cells (iPSCs), and are often difficult to discern from embryonic stem cells by genetic analysis. Since the iPSCs have been reprogrammed to behave like embryonic cells, there may be sporadic "errors" in some of the clones. Careful selection and evaluation must be used when selecting cells for use in medical applications.

The very first iPSCs were created from mouse cells in 2006 - by 2007, the same feat was accomplished in human cells. Four critical genes (Oct3/4, Sox2, klf4, and c-Myc) were introduced into the adult stem cells using a retrovirus. These genes are master transcriptional regulators, and induce the cells to become pluripotent.

Adult Stem Cells to Heal Burns

Stem Cell Research and Therapies

There are many clinical trials currently underway to create treatments for genetic diseases with stem cells. Lou Gehrig's Disease, or Amyotrophic Lateral Sclerosis (ALS) is one such disease currently in the clinical trial phase. Neural stem cells are injected into different areas of the spinal cord, in the hope that they will form new, healthy nerve cells, preserving the functionality of the diaphragm (allowing the patient to keep breathing, since respiratory failure is a fatal complication of this disease).

Stem cells may also treat victims of traumatic injuries and burns. A "skin gun" was developed by Dr. Jörg Gerlach as a way to apply skin stem cells to burn victims. Skin stem cells are isolated from an area of healthy skin on the patient, grown in a bioreactor, and then sprayed on the burn area with the specialized spray gun. The skin will regrow over the burned area in a matter of days, much faster than traditional skin graft methods. In addition, since the skin comes from the patient's own skin cells, there is no chance of rejection by the immune system. The skin cells simply grow and cover the burned area, preventing infection and other complications. This treatment is not a future possibility, but a real, current treatment option at the Berlin Burn Center in Germany.

Stem Cell Therapy Stories, Part 1

Stem Cell Therapies, Part 2

Stem Cell Therapies, Part 3

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)